软陶基本功练习教学设计
1、认知目标:通过本课学习,探究软陶泥塑的基本造型方法,引起学生对软陶制作的兴趣。
2、教学目标:认识软陶,感受软陶的特点及性能,锻炼学生的思维能力,动手能力以及创新能力。
3、情感目标:欣赏软陶作品,感受软陶的艺术魅力。让学生知道陶文化是我国一项悠远的民间艺术培养其爱国主义精神和民族自豪感。
4.创新目标:在认知和技能掌握的基础上,运用丰富的想象力,大胆的、高效的、创造性地完成作品。
对软陶基本知识的了解以及对基本制作方法的掌握。巧妙设计,大胆的、高效的、创造性地完成作品。
对软陶作品的赏析以及对软陶创意技巧的掌握。制作过程中每一个环节的衔接。
采用知识讲解和技术示范、启发式教学相结合的方式,随时注意学生的反馈情况,及时掌握学生动态,把握整个课堂。
学生采取先欣赏,后激趣;先观察,后练习,再展示的学习方法。
教具的使用:
软陶图片资料、软陶作品、软陶材料、多媒体课件、软陶原料、各种工具。
课堂类型:
欣赏制作课。
一.导入:
今天我们接触一样很好玩、很有趣的东西,它是什么呢?就是老师手里的软陶。当你拿在手里,一定会喜欢上它。 因为用它能做出好多我们自己喜欢的小形象。看看老师的这些作品最吸引你们的地方在哪呢?这些花纹都是用手捏出来的,神奇不神奇?你们想玩一玩吗?
二.新授:学生动手实践,感受软陶的性能。
(1) 现在,你们拿块土玩一玩,看看有什么奇特的?
总结:软陶是油性陶土,有较强的可塑性和延展性。做出的形象经过烤制后会变得很坚硬,能成为*的艺术品。
(2)赏析作品,谈感受。欣赏软陶作品,让学生感受软陶艺术的无穷魅力。
老师**了一些图片,上面都是软陶作品,你们仔细欣赏一下,看看用软陶能做什么?
下面,老师给大家一些时间自己动手玩一玩,拿块土感受一下。现在我们就开始学习了,精神可要集中呦!你们能把它搓成条吗?试试看,不用搓的太长。说一说你是怎样搓出来的?用手的哪个部位?在你们动手的过程中,老师也发现有的同学搓的一段粗、一段细,这是什么原因呢?好,接下来把其他两块土也搓成条,尽可能把它搓的粗细均匀,长短整齐。
下面,练练大家的眼力,把它们均匀地分几段,老师建议你们最好多分几段,因为这个过程在我们以后的制作中非常有用处。用刀切的时候刀要垂直桌面,不要倾斜同时还要注意安全。说一说你是怎样切出来的?随着制作数量和时间的增多应该提高速度和质量。
接下来,我们练习揉球。尽可能的揉的圆一些、上面的痕迹少一些。现在,说一说你是怎样揉出来的?把方法教给大家,用手的哪一部分力量?再思考一下有规律的用力揉和随意的揉效果一样不一样?所以揉也需要技巧,有没有这种体会?老师提醒大家在动手实践过程中总结方法、积累经验。这样,才能学会学习。
最后,我们来进行捏合,把带有小花纹的软陶块慢慢地捏合在大的圆形软陶块上,仔细慢捏,不要破坏花纹的原有图案,然后整理使之成为一个整体。讨论一下,怎样捏合的效果最好,既不破坏花纹又能让花纹块较好的融合在大圆球里面?
四.小结:
软陶能做好多形象,小到一个发卡、挂件,大到立体造型、壁画都能用它来表现。可以说没有做不到的,就 怕想不到。
五.作业设计(分层布置)
和你的好朋友或者父母合作完成一件新的作品,题目自拟,主题自定。
拓展阅读
1、分数的基本性质优秀教学设计
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
3、较好的实现知识教育与思想教育的有效结合。
能熟练、灵活地运用分数的基本性质。
一、创设情景
师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的`,所以
生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、 自主练习 巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4 题学生自做。师**指导。
2、《比例的基本性质》教学设计优秀
第一课时比例的意义
比例的意义(教材第40页的内容)
1、理解和掌握比例的意义。
2、了解比和比例的区别与联系。
2、能用比例的意义判断两个比能否组成比例。
教学重难点:
1、认识比例,理解比例的意义。
2、在已有知识的基础上,结合实例引出新的知识。
教具准备:
情景图、多媒体课件、习题卡。
一、导入
出示课题:比例
看到课题你想到了以前学过的什么知识?(生1,生2等回答)
我们已经了解了比的这些知识,请做下面练习。
求下面各比的比值。
18:453:52.7:4.5
求完比值你觉得哪些比有联系?
【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】
“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?
师:相机板书:3:5=2.7=4.5?
今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?
板书完整课题:比例的意义
二、揭题示标。
预设:生:1、比例的意义是什么?
生:2、比例的意义有什么作用?
(师趁机板书在黑板右上角)
【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】
本节课我们就来完成这两个目标:
三、自主探索
出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?
【设计意图:对学生同时进行思想品德教育和爱国教育】
生各抒己见。
你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。
自学指导:
1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。
2、发现了什么有趣的现象?
3、把你的发现尝试用算式写下来。
(5分钟后,期待你精彩的分享)
【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】
(二)自学
学生认真看书自学,教师**,督促人人都在认真地思考。
(三)汇报分享
谁愿意把你的结果和大家分享?师相机板书
(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…
原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。
我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。
【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】
师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。
生:…
师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。
出示“比例的意义”概念
擦去开始板书中的“?”并把比例可用分数形式表示板书出来
【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】
师:你能说一说组成比例要具备哪些条件吗?
生:…
师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?
生:…
【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】
四、当堂检测(牛刀小试)
下面各比能组成比例吗?你是怎样判断的?请写出计算过程。
(1)3:7和9:21
(2)15∶3和60∶12
五、当堂训练:
1、把下面的式子进行归类:
(5)72:8=3X3(6)3.6:6=0.6
思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?
2、判断:
(1)、有两个比组成的式子叫做比例。()
(2)、如果两个比可以组成比例,那么这两个比
的比值一定相等。()
(3)、比值相等的两个比可以组成比例。()
(4)、0.1∶0.3与2∶6能组成比例。()
(5)、组成比例的两个比一定是最简的整数比。()
六、拓展提升(思绪飞扬)
1、写出比值是7的两个比,并组成比例。
2、12的因数有(),从12的因数中挑选4个数组成比例是()。
3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?
设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握
七、全课总结
今天这节课你有什么收获?
八、课堂作业
第43页第2、3题。
九、抽查清。(每组4号同学完成)
判断下面每组中的两个比能不能组成比例。
30:5和48:812:0.4和3:5
十、板书设计
表示两个比相等的式子叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
十一、教学反思:
本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:
1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。
2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。
3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。
4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。
5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。
3、《比例的基本性质》教学设计优秀
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
二、教学重点难点
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
(一)创设情境,提出问题
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
4︰6
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
应用比例的基本性质,判断下面两个比能不能组成比例。
6∶3 和 8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
(三)回顾总结
在这节课中你又有什么新的收获?
4、《狐狸和乌鸦》教学设计方案和课后练习
教材说明:
本文通过讲述一只狡猾的狐狸用奉承话,骗取乌鸦的一片肉的故事说明爱听奉承话容易上当受骗。
1、理解课文内容,懂得喜欢听奉承话,容易上当受骗。
2、朗读课义,能照老师的样子,读出狐狸说话的语气。
理解课文,抬导朗读。
理解狐狸说的三次话及乌鸦受骗上当的原因。
一、谈话引入:
在大森林里,住着这样一对邻居:一只长丑,叫声难听,但喜欢听奉承话的乌鸦。一只好吃懒做,而又狡猾的狐狸。这一天,在它们之间发生了一个有意思的小故事。就让我们未看一看…
第一段:
①指名读,思考:狐狸和乌鸦往在哪?
乌鸦:住在 大树上面的窝里。
孤狸:住在 大树底下的洞里。
②指导朗读:这一段要用叙述的语气。
第二段:
①齐读,思考:这“段上要写了准,干什么,结果怎么样?
(乌鸦给它的孩找到一片肉,非常高兴,〕
②请你在课文中找一找乌鸦为孩了找食的动词:
飞 找 叼 站
想一想,飞已这儿个次能个能颠倒?为例么?
③乌鸦只找到一片肉,可它为什么高兴呢?
(它非常辛苦地哺育它自己的孩子,尽管只是一小片肉,也是它辛苦找来的。,所以很高兴。)
④指导朗读:这一段要读快一些,读出高兴劲儿来。
第三段:
想一想: 当乌鸦找到食物时,狐狸也出来找食,她看见了什么?它心纵会怎么想呢;
诣名读,思考:狐狸那么想吃到那片肉,干脆人跟乌鸦要,行不行?(鸟鸦辛辛苦苦找到的食物,一定不给)
那狐狸去硬抢乌鸦嘴里的肉,行不行?
(树高,狐狸不会爬树,乌鸦又不会给,就抢不到肉了。)
那么,狐狸要想得到肉,乌鸦又不会给,想去抢又够不着,
它会怎么办呢?
(想办法骗到手。)
第四——七段:
狐狸既不能去向乌鸦要,又不能去硬抢,可它又很想吃那片肉,于是它想出了个办法——让乌鸦开口说话?这样,那片肉就会……那狐狸到底是怎样把肉片到手的呢?
自由读,思考:狐狸对乌鸦说了几次话?说了些什么?用“~~”画出来。
每一次乌鸦怎么表现的?用“…”画出来。
集体讨论:
第一次——狐狸的话是随口说的吗,你从哪儿可以看出来?
“想了想”——狐狸在暗暗打主意(怎么才能得到肉〕
狐狸这么热情的和乌鸦打招呼,目的是什么
狐狸这么热情的和乌鸦打招呼,目的是什么?
假惺惺地表示亲热、讨好,用假装尊敬地问候语气。
乌鸦这时什么表现?说明什么?
“不作声”头脑清醒,保持警惕。
第二次——狐狸看到乌鸦不作声,又说明了什么?它真的关心乌鸦的孩子吗?
那它为什么要这样问候呢:
关心乌鸦的孩子,是为了讨好乌鸦,让它放松警惕开口说话。
想一想,狐狸的话该怎么读?
要用亲近、关心的语气和感情来读。
乌鸦的反应与第一次一样吗?为什么会有变化?
听到狐狸问候色的孩子,觉得挺顺耳,心里有所动,觉得狐狸
还不算坏,但又怕张嘴掉了肉。还是不作声。
第三次——狐狸看到乌鸦看了它一眼,心里怎样想?
知道乌鸦喜欢听奉承话,心想:有门儿,还得好好夸夸它。
狐观夸乌鸦“羽毛漂亮,嗓子好”真的是这样吗?
其实事实并非如此,狐狸是故意奉承,就是想让乌鸦开口,好得到那片肉。
想一想,狐狸这次的话该用怎样的语气读?
读出赞美的语气,再说麻雀的话是要用瞧不起、奚落的语气。
乌鸦还从来没有听到过有谁如此称赞它,这时它有什么反应?
你从哪儿看出来的?结果怎样?
心里一高兴,真的唱起歌来,结果,肉掉下来,狐狸叼走了。
想一想,乌鸦的叫声怎么读?
“哇……”的一声,声音适当放低,拉长。
听老师范读后练习,再分角色朗读。
小结课文内容:
1、分角色朗读课文,思考;乌鸦为什么会上狐狸的当?
乌鸦明明知道狐狸假意问候它,讨好它,是为了得到它嘴里的肉如果它飞回窝就不会丢掉那片肉,但它还想听狐狸的奉承话,所以上了当。
2、你学完这个故事,从中明白了什么?
知道……爱听奉承话容易上当受骗,所以平时个能光爱听别人的好话和夸奖。
1、造旬:
一……就……
教学方法:先在课文中找出联词。
想一想什么时候用这个关联词?
自己练习说一句话,再写下来。
2、按课文内容填空:
乌鸦( )给他的孩子找东西吃,它找到( ),( )回来,( )窝旁边的树枝上,心里( )。狐狸抬起头看见乌鸦嘴里的肉,馋得( )。笑着说:“( 〕。”它见乌鸦不作卢,又说:“( )。”接着又说:“( )。”
3、给句子加标点符号,再有语气地读一读:
乌鸦的嗓子好吗
乌鸦的嗓子不好
亲爱的乌鸦您唱几句吧
4、读一读,写一写:
乌鸦 做窝 狐狸 底下 山洞 一片肉
旁边 一直 羽毛 漂亮 句子 差不多
第一次 您好,亲爱的乌鸦! 不作声
第二次 您的孩子好吗? 看了一眼,还是不作声
第三次 羽毛真漂斋嗓子真好 得意极了
5、分数的基本性质优秀教学设计
教学内容:人教版新课标教科书小学数学第十册75~77页例
1、例2.教学目标:1知识与技能目标:
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、过程与方法目标:
(1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质做出简要的、合理的说明。(2)培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决的需要,收集有用的信息进行归纳,发展学生归纳、推理能力。
3、情感态度与价值观目标:
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)鼓励学生敢于发现问题,培养学生敢于解决问题的学习品质。
教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。教学难点:自主探究、归纳概括分数的基本性质。教学准备:学生准备一张正方形的纸,课件教学过程:
一、故事导入。
师:同学们,你们喜欢看《喜羊羊与灰太狼》的动画片吗?生:喜欢。
师:老师这里有一个慢羊羊分饼的故事,羊村的小羊最喜欢吃村长做得饼。一天,村子做了三块大小一样的饼分给小羊们吃,他把第一块饼的1/2分给懒羊羊,再把二块饼的2/4分给喜羊羊,最后把第三块饼的4/8分给美羊羊,懒羊羊不高兴地说:"村长不公平,他们的多,我的少。”(师边说边板书分数)同学们,村长公平吗?他们那个多,那个少?
生:公平,其实他们分得一样多。
师:到底你们的猜想是否正确呢?让我们来验证一下!
二、探究新知,解决问题:1、小组合作,验证猜想:(1)玩一玩,比一比.(读要求)师:我们现在小组合作来玩一玩,比一比.(出示要求)
师:(读要求)现在开始.(学生汇报)师:你们发现了什么?
生1:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(师在分数上画符号)
生2:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(出示课件演示)
2、初步概括分数的基本性质.(2)算一算,找一找.师:(提问)同学们观察一下,这三个分母什么变了?什么没变?生1:它们的分子和分母变化了,但分数的大小没变。生2:它们的'分子和分母变化了,但分数的大小没变。
师:这三个分数的分子和分母都不相同,为什么分数的大小都相等呢?同学们思考一下。
生1:它们的分子和分母都乘相同的数。生2:它们的分子和分母都除以相同的数。
师:那同学们的猜想是否正确呢?它们的变化规律又是怎样呢?我们小组合作观察讨论。并把发现的规律写下来。
(出示课件)
小组汇报:(归纳规律)
师:哪一组把你们讨论的结果汇报一下,从左往右观察,你们发现了什么?生1:从左往右观察,我们发现1/2的分子和分母同时乘2,分数的大小不变。生2:从左往右观察,我们发现1/2的分子和分母同时除以4,分数的大小不变。师:你们是这样想的,既然这样,那么分子和分母同时乘5,分数的的大小改变,吗?生:不变。
师:同时乘
6.8呢?生:不变。
师:那你们能不能根据这个式子来总结一下规律呢?
生1:一个分数的分子和分母同时乘相同的数,分数的大小不变。生2:一个分数的分子和分母同时乘相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生:......
师:这样的例子,我们可以举很多,刚才我们是从左往右观察,从右往左观察,哪一组汇报一下。
生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。
生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。(师课件演示)
师:你们是这样想的,既然这样,那么分子和分母同时除以5,分数的的大小改变,吗?生:不变。
师:同时除以
6.8呢?生:不变。
师:那你们能不能根据这个式子来总结一下规律呢?
生1:一个分数的分子和分母同时除以相同的数,分数的大小不变。生2:一个分数的分子和分母同时除以相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生举例
3、强调规律
师:我把两句话合成了一句话,根据分数的这一变化规律,你认为下面的式子对吗?(课件出示)
生:回答,错的,因为分数的分子、分母没有乘相同的数。师:(在黑板上圈出)对必须乘相同的数。
生:错,因为分子乘2,分母没有乘2,分子和分母没有同时乘。师:(在黑板上圈出)对必须同时乘。
师:分数的分子、分母都乘或除以相同的数,分数的大小不变,这里“相同的数”是不是任何数都可以呢?我们看一看(课件出示)师:这个式子成立吗?
生:不成立,因为0不能做除数,4乘0得0是分母,分母相当于除数,所以这个式子是错误的。
师:我不乘0,我除以0可以么?生:不成立,因为0不能作除数。
师:同学们不错,这两个式子都不成立,我们刚才总结的分子、分母同时乘或除以相同的数,这相同的数必须(生:0除外)(师板书)
师:这一变化规律就是我们这节课学习的内容,分数的基本性质,(板书课题)在这一规律里,需要我们注意的是:(生:同时、相同的数、0除外)
师:我相信懒羊羊学习了分数的基本性质,那就不会生气了它知道(出示课件)一样多,咱们同学们千万不要犯它同样的错误了,我们把这一条规律读两遍,并记下它。(生读规律)
师:学习了分数的基本性质,我想利用你们的火眼金睛,当一当小法官(出示课件)
生:(读题,用手势表示对、错,并说出原因)
三、运用规律,自学例题1、学习例2师:这个分数的基本性质特别的有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数,我们一起去看一看。(课件出示例题)学生读题
师:分子、分母应该怎样变化?变化的依据是什么?小组内讨论一下(学生讨论)师:谁来说一说?
生:2/3的分子分母同时乘4得到8/12,变化的依据是分数的基本性质。生:10/24的分子和分母同时除以2,得到5/12,变化的依据是分数的基本性质。师:回答得不错,自己独立完成这题。
师:(**)请一名学生说出答案,(生说,师出示答案)
师:分数的基本性质作用可大了,那大家回想一下,这与我们以前学习的除法里面哪一个性质相似?生:商不变的性质。
师:除法里商不变的性质是怎么说的?
生:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。师:你们能否用商不变的性质来说明分数的基本性质?小组内讨论一下。
小组讨论
师:哪一组把讨论的结果汇报一下。
生:在分数里,被除数相当于分子,除数相当与分母,被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时乘或除以相同的数(0除外),因此,商不变就相当于分数的大小不变。(师板书)
师:既然能用商不变的性质来说一说分数的基本性质,那我们来小试牛刀。(出示课件)
生:5除以10等于1/2,当被除数5缩小5倍就相当于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,当除数24除以3得8就相当于分母除以3,分母除以3分子也除以3,12除以3得4.五、课堂运用。1、跨栏高手
师:同学们的回答简直太棒了,那你们有资格让老师把你们带到运动场去当跨栏高手了。(出示课件)
师:(学生回答三题)同学们这么大的数一下子就得出结果,有什么秘诀吗?生:用大数除以小数,就知道分母、分子扩大了几倍.2、拓展延伸:
师:当了跨栏高手,我们的成绩非常的好,那我们就到羊村去玩吧,来到羊村,慢羊羊让大家当村长,解决难题,你们敢接招吗?生:敢
师:(出示课件)那我们就要小组为单位,开始玩游戏。小组汇报结果
六、捡拾硕果
看到同学们这么自信的回答,老师知道今天大家的收获不少,说一说这节课你都收获了哪些?生说
师:同学们,表现得太好了,这节课,老师从你们的身上也学到了许多,谢谢你们,下课!
转载请注明出处:https://www.bhks.cn/articles/14739.html